linuxsir首页 LinuxSir.Org | Linux、BSD、Solaris、Unix | 开源传万世,因有我参与欢迎您!
网站首页 | 设为首页 | 加入收藏
您所在的位置:主页 > Linux基础建设 >

Ubuntu 18.04安装Tensorflow(GPU)

时间:2019-06-11  来源:未知  作者:admin666

1.Ubuntu安装Python3.6:

首先拉取远程仓库

sudo add-apt-repository ppa:jonathonf/python-3.6 

更新源

sudo apt-get update

在线安装

sudo apt-get install python3.6

补充,其实安装python3用一句:sudo apt-get install python3-dev 即可。查看版本:python3 --version

更改默认值,python默认为Python2,现在修改为Python3

sudo update-alternatives --install /usr/bin/python python /usr/bin/python2 100

sudo update-alternatives --install /usr/bin/python python /usr/bin/python3 150

2.Ubuntu安装nvidia显卡驱动(参考上一篇博客)

查看nvidia显卡驱动版本

nvidia-smi  

3.安装对应版本的CUDA

在安装CUDA时一定要注意其与英伟达显卡驱动以及Linux系统和GCC版本的对应关系,如果版本之间不匹配,是安装不成功的。

CUDA与Driver的对应版本
参考链接:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
cuda8.0与Linux系统以及GCC的对应关系
参考链接:https://docs.nvidia.com/cuda/archive/8.0/cuda-installation-guide-linux/index.html
cuda9.0与Linux系统以及GCC的对应关系
参考链接:https://docs.nvidia.com/cuda/archive/9.0/cuda-installation-guide-linux/index.html
cuda10.0与Linux系统以及GCC的对应关系
参考链接:https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

查看gcc版本:

gcc -v

由于RTX2060显卡驱动在Ubuntu18.04上是418.56版本,所以选择对应的cuda10.1版本安装

cuda官网下载:https://developer.nvidia.com/cuda-toolkit

另附历史版本:https://developer.nvidia.com/cuda-toolkit-archive

CUDA安装命令:
sudo sh cuda_xxx_linux.run

4.安装CUDA对应的CUDNN版本

cudnn官网下载(需要注册):https://developer.nvidia.com/cudnn

另附:https://developer.nvidia.com/rdp/cudnn-archive 

下载Ubuntu18.04对应的CUDNN安装包,然后进入CUDNN安装包所在目录,执行以下命令:

sudo dpkg -i runtime包.deb 
sudo dpkg -i developer包.deb 
sudo dpkg -i 代码sample包.deb

至此,CUDNN安装完成。

5.安装对应版本的Tensorflow

首先要清楚最新版Tensorflow最多支持到CUDA哪个版本?

https://www.tensorflow.org/install/install_sources#common_installation_problems

安装pip3(针对python3): 

sudo apt-get install python3-pip

官方推荐是用Virtualenv安装,不过这里我们仅使用pip进行安装。

sudo pip3 install tensorflow-gpu

 我现在这里安装的是tensorflow_gpu-1.13.1。由于CUDA最新版本是10.1,但是目前最新的tensorflow1.13.1还不支持这个版本,所以只能用CUDA10.0。

推荐搭配:CUDA10.0+CUDNN7.5+tensorflow-gpu1.13.1+python3.6.7

卸载cuda和cudnn,重新安装:

sudo apt remove cudnn*
sudo apt-get remove cuda*
sudo apt-get autoclean
然后在目录切换到/esr/local/下
cd /usr/local/
sudo rm -r cuda-10.1
搞定啦
可以重新安装其他版本啦

设置root用户密码:

sudo passwd root

以下是编辑 profile文件命令:
1.su 然后输入密码 进入root 2.gedit etc/profile 3.编辑保存.

首先确认/etc/profile中的路径包含了cuda10.0的安装路径及相应的库文件
编辑/etc/profile添加:

export PATH=$PATH:/usr/local/cuda-10.0/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-10.0/lib64

然后
source /etc/profile
使配置文件生效,再次执行。

安装vim:
sudo apt-get install vim
vim --version
问题报错:ImportError: libcublas.so.10.0: cannot open shared object file: No such file or directory
由于服务器TensorFlow经常报这个错误,
步骤1:
sudo vim ~/.bashrc
按下i进入编辑
在末位加入:
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64
export PATH=$PATH:/usr/local/cuda-10.0/bin
export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.0
按下ESC退出编辑,输入:wq命令进行保存。
使之生效
source ~/.bashrc
步骤2:
据说在修改了步骤1就好了。但是每次我步骤1弄完,问题依旧存在。但是只需要步骤2,问题就可以解决。
检查 /usr/local/cuda-10.0/lib64 下是否有 libcublas.so.10.0
如果有,终端输入:
sudo ldconfig /usr/local/cuda-10.0/lib64

然后终端输入python

import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))

进行tensorflow是否安装成功的验证。

Ubuntu 18.04安装Tensorflow(CPU)  https://www.linuxidc.com/Linux/2019-06/158934.htm

Linux公社的RSS地址:https://www.linuxidc.com/rssFeed.aspx

友情链接
  • Mozilla发布Firefox 67.0.4,修复沙箱逃逸漏洞
  • 蚂蚁金服正式成为CNCF云原生计算基金会黄金会员
  • Firefox 68将采用Microsoft BITS安装更新
  • OpenSSH增加对存储在RAM中的私钥的保护
  • 谷歌想实现自己的curl,为什么?
  • Raspberry Pi 4发布:更快的CPU、更大的内存
  • Firefox的UA将移除CPU架构信息
  • Ubuntu放弃支持32位应用程序实属乌龙,Steam会否重回Ubuntu怀抱
  • Qt 5.13稳定版发布:引入glTF 2.0、改进Wayland以及支持Lottie动
  • 红帽企业Linux 7现已内置Redis 5最新版
  • Slack进入微软内部禁用服务清单,GitHub也在其列?
  • 安全的全新编程语言V发布首个可用版本
  • Windows Terminal已上架,快尝鲜
  • 阿里巴巴微服务开源生态报告No.1
  • 面世两年,Google地球将支持所有基于Chromium的浏览器
  • 推进企业容器化持续创新,Rancher ECIC千人盛典完美收官
  • CentOS 8.0最新构建状态公布,或于数周后发布
  • Debian移植RISC
  • 微软拆分操作系统的计划初现雏形
  • Oracle发布基于VS Code的开发者工具,轻松使用Oracle数据库
  • Ubuntu 19.10停止支持32位的x86架构
  • 微软为Windows Terminal推出全新logo
  • 联想ThinkPad P系列笔记本预装Ubuntu系统
  • 微软发布适用于Win7/8的Microsoft Edge预览版
  • 启智平台发布联邦学习开源数据协作项目OpenI纵横
  • 经过六个多月的延迟,微软终于推出Hyper
  • ZFS On Linux 0.8.1 发布,Python可移植性工作
  • DragonFly BSD 5.6.0 发布,HAMMER2状态良好
  • Linux Kernel 5.2
  • CentOS 8.0 看起来还需要几周的时间
  • 百度网盘Linux版正式发布
  • PCIe 6.0宣布:带宽翻倍 狂飙至256GB/s
  • PHP 7.4 Alpha 发布,FFI扩展,预加载Opcache以获得更好的性能
  • Canonical将在未来的Ubuntu版本中放弃对32位架构的支持
  • Scala 2.13 发布,改进的编译器性能
  • 微软的GitHub收购了Pull Panda,并且使所有订阅完全免费
  • Windows Subsystem for Linux 2 (WSL 2)现在适用于Windows 10用
  • Debian 10 “Buster”的RISC
  • MariaDB宣布发布MariaDB Enterprise Server 10.4
  • DXVK 1.2.2 发布,带来微小的CPU开销优化
  • DragonFlyBSD 5.6 RC1 发布,VM优化,默认为HAMMER2
  • PrimeNG 8.0.0 发布,支持Angular 8,FocusTrap等
  • GIMP 2.10.12 发布,一些有用的改进
  • 清华大学Anaconda 镜像服务即将恢复
  • Debian GNU/Linux 10 “Buster” 操作系统将于2019年7月6日发布
  • 时时彩论坛
  • 五星体育斯诺克
  • 北单比分直播
  • 河北11选5走势图
  • 福建体彩36选7开奖结果
  • 九龙图库下载